
Deduplication in Airtable

Note: Users who implemented the original version of these deduplication routines are strongly
encouraged to update their bases to take advantage of the improvements found in this revision.

Table of Contents
Deduplication in Airtable.. 1
Quickstart.. 1
Introduction.. 2
Deduplication Mechanism.. 3

Overhead, Comparison with Initial Version.. 4
Airtable Deduplication Block... 5
Deduplication Routines.. 5

Representative Process Flow.. 5
Match Key... 7

Implementing Deduplication... 9
Duplicate Detection.. 9
Handling of False Positives... 12

Persistence and False Positives... 16
Duplicated Bases and RECORD_ID()... 18

Merger of Authentic Duplicates.. 20
Sample Bases.. 23
Trouble-shooting Common Problems... 24
Video Introduction.. 24
Updates and Corrections.. 24
The Author.. 24
Appendix A: Defining {MatchKey}... 25
Appendix B: Accented/Unaccented Characters... 29

Quickstart
This document provides detailed information on version 3.0 of my Airtable deduplication routines:
The rationale behind them; how they operate; how to add them to a base; potential optimizations;
suggestions for implementation; and more – invaluable assistance for anyone wishing to modify or
enhance them, but admittedly overkill for the Airtable user who merely wishes to incorporate the
functionality in his or her own bases.

For those seeking a relatively painless way to add deduplication to an existing base, I suggest the
following, stripped-down introduction to deduplication:

1. Watch the introductory video demonstrating each of the three deduplication ‘modules.’

2. To add duplicate detection and marking, follow the steps outlined in Duplicate Detection.

Deduplication in Airtable • 1

1. Information on creating a {MatchKey} formula tailored to one’s needs can be found in
Appendix A: Defining {MatchKey}.

2. These are the core deduplication rule sets, mandatory for any implementation.

3. To add support for false positives – that is, the tagging of potential duplicates that prove not
to represent actual dupes – follow the steps outlined in Handling of False Positives.

4. To add support for persistent tracking of false positives – for instance, to support recurring or
ongoing deduplication of a base – follow the steps given in Persistence and False Positives.

5. To add support for merging duplicate records, follow the steps outlined in Merger of
Authentic Duplicates.

Please keep in mind the rule sets presented here are cumulative: That is to say, all implementations
require the routines outlined in Item 2; support for false positives require those in Items 2 and 3;
persistent false positives require Items 2, 3, and 4; and to merge records requires all the routines
from Items 2 through 5.

Most users will be able to copy-and-paste calculation and aggregation formulas from the sample
bases; they should work with only minimal adjustments to existing bases.

Introduction
A frequently requested enhancement is for Airtable to support automatic deduplication of records.
Exactly what that might mean is not always clear: Reading through the replies to the master thread
in Airtable Community reveals a myriad interpretations of the term, ranging from simple enforcing
of primary field uniqueness, to highly complex, variably weighted routines whose logic, oddly
enough, ofen just happens to match the requester’s specific use case….

Further complicating the matter is that, in the context of an Airtable base, true deduplication – that
is, the removal of identical records – is ofen neither all that valuable nor what is actually desired.
Frequently, what the user considers duplicate records are far from identical; in fact, they could difer
widely in every field but one and still be a candidate for deduplication.

For instance, take the common task of merging mailing lists: One list contains an entry for ‘John
Uniquemiddlename Doe’ at ‘123 Main Street, Centreville’; the other has a ‘John Uniquemiddlename
Doe’ at ‘456 Central Ave., Middleburg.’ By one measure, these records are just about as diferent as
they could possibly be – yet, in that they provide comparable data about the same individual, they

Deduplication in Airtable • 2

https://community.airtable.com/t/record-duplication-detection-deduping-and-duplicate-merging/340

are undeniably duplicate records. Not literally duplicates, perhaps, but certainly duplicates
semantically.

What determines a duplicate, then, isn’t always the byte-by-byte replication of an existing record;
instead, sometimes it’s merely the presence of the same or similar information in comparable data
fields. In that case, we could try to deduplicate our mailing list based on matches against {Name}.
That way, even if ‘John Uniquemiddlename Doe’ moves from Main to Central, the system will still
know it has a duplicate record to delete.

–––but what if he didn’t move from Main to Central, but instead moved from Central to Main? How
would the program know which address is current and which to delete? Is it possible he might
reside on Main Street but have ofice space on Central? Or what if some day he decides to give up
trying to fit ‘Uniquemiddlename’ in the tiny little space allowed by most forms and from now on to
go by ‘John U. Doe’ – and sometimes just ‘John Doe?’ Do you retain the oldest ‘John Doe’ record in
the database and eliminate the rest? Or would that be the newest record you retained? Maybe you
should just delete them all and wait for John to register again….

Clearly, aside from the relatively trivial – and frankly not all that common – need to eliminate
redundant, thoroughly identical records, there are few situations in which fully automated
deduplication could be tolerated. Instead, rather than duplicate removal, what most users appear to
need is duplicate identification: a method by which probable duplicate entries are identified,
tagged, and turned over for the user to vet for possible deletion or consolidation. More correctly,
given how intractably it is joined with the base’s purpose, structure, and data model, the method
must be defined by the user. Accordingly, what he or she actually requires from the platform is not
deduplication functionality but a mechanism supporting such functionality.

Deduplication Mechanism
This document and the accompanying example bases attempt to provide just such a mechanism.
The functions supported include

• Identification of likely duplicates, based upon user-defined match fields.

◦ Match fields may be calculated based upon one or more record fields.
◦ Match fields may support case-sensitive or -insensitive matches.
◦ Match fields may support more complex matching variations (common substitutions,

matching of accented with unaccented characters, Soundex support, and the like).
◦ Likely duplicates may be marked with dedicated field, Airtable record coloring.

Deduplication in Airtable • 3

• Marking of false positives — that is, of seeming duplicates that turn out not to be duplicates.

◦ Ticking of checkbox ‘unflags’ all matching false positives.
◦ If desired, the list of records marked as false positives can be made persistent so as not to

require deduplication during subsequent passes.

• Merging of duplicate records.

◦ Authentically duplicate records may be merged, rather than simply deleted.
◦ Merge rules are user-defined based on a self join between master and duplicate records.

Overhead, Comparison with Initial Version
Those familiar with the original version of this document may recall it spent much time and
emphasis on diferentiating between duplicate detection, with the immediate generation of an alert
when the record just entered duplicated one already in the base, and deduplication as a one-time
cleanse of redundant entries from an existing base. At the time the initial version was written, this
dichotomy seemed important because of the processing deduplication apparently required.
However, since then two things have occurred: First, experience with deduplicating relatively large
bases – five to ten times the size of the largest previously cleaned – revealed the overhead not to be
nearly as daunting as originally thought. Second, I stumbled across Airtable’s little-known and
un[der]documented support for aggregation formulas, as opposed to aggregation functions, in
rollup fields, which further reduced the operational impact. As a result, this revised version presents
only a single method, which can be added to an existing base to clean it and then lef in place for
ongoing detection.

That said, with a large-enough base, even this latest version of the code can experience a noticeable
lag time. For instance, with 10,000 records, the amount of time it takes to flag a false positive
typically runs 4 to 5 seconds — at the edge of acceptable, perhaps, but most likely acceptable for
most applications. However, using the routines presented here, merging a duplicate record with its
corresponding master can take 45 seconds or more. Again, for a base requiring relatively few
merges, this may still be reasonable; under other circumstances, it may be preferable initially to
mark records to be merged and then perform the mergers in a single batch, as the delay to update
afer a single merger is the same as it is to update afer an infinite number of mergers. (This
technique is discussed in more detail later.)

Deduplication in Airtable • 4

Airtable Deduplication Block
Airtable currently has a Deduplication Block in beta test, intended to be used to cleanse a table. It
has some very nice features; it also has some unsurprising limitations. No single module could
possibly satisfy everyone’s expectations for a deduplicator – and some of my requirements are
admittedly niche. While I may not be able to replace all of my deduplication routines with the Block,
I recently ran it against a 5,100-record client table with about 8% redundancy, and it performed
admirably. More importantly, I also ran it against a multi-thousand-record table I’d previously
cleaned using my own code, and it trapped several duplicates my routines had missed. I could easily
imagine a deduplication work flow that makes use of both customized routines and the standard
Block.

Deduplication Routines
Like seemingly everything I do, the deduplication routines are based upon an architectural trick I
frequently use: Every record in the [Main] table is linked to a single record in a second table (here
called [DeDupe]). This gives formula fields in the second table visibility across the entire main
table, making possible cross-record calculations that are otherwise unattainable. In this instance
such all-to-one connectivity is used to generate a long, concatenated string containing key data
from all of the main table’s records. Detecting duplicates, then, is as simple as searching for a match
within this longer string.1

Representative Process Flow
The following table captures a representative process flow from the point of view of both the user, in
the lef-hand column, and the application itself, in the right. As one will see, user input is generally
limited to ticking a checkbox, to indicate a flagged match is actually a false positive, or creating a
linked record, either through the standard UI or by copy-and-pasting a value from one cell into
another, in order to merge authentic duplicates. With each step the user takes, as documented on
the lef, the right-hand column explains what processing goes on behind the scenes to provide the
necessary functionality.

1 Actually, rather than searching for a match, the routine compares the length of the {MatchString} with its
length afer all instances of the record’s {MatchKey} are removed. If the diference is greater than the length of
{MatchKey}, it means more than one instance was removed; hence, the record is considered a duplicate.

Deduplication in Airtable • 5

https://community.airtable.com/t/record-duplication-detection-deduping-and-duplicate-merging/340

USER INTERACTION BASE PROCESSING

1. The table subject to deduplication is opened. 1. The table subject to deduplication is opened.

.a For each record, a {MatchKey} is created, based
upon rules determined by operational procedures
and the data model.

.b Every record in the main table is linked to a single
record in a second table devoted to deduplication.

.c Within [Dedupe], all {MatchKey}s from
[Main] are rolled up into one concatenated
{MatchString}.

2. Possible duplicate records are flagged for
inspection.

2. Possible duplicate records are flagged for
inspection.

.a Within [Main], {Dupe?} compares the length of
{MatchString} with the length of
{MatchString} with all instances of
{MatchKey} removed. If the diference is greater
than the length of {MatchKey},
{MatchString} must have contained more
than one instance of {MatchKey}. {Dupe?} is
set to 1.

.b (Optional.) In addition to {Dupe?} being set to 1,
other fields may be set to indicate a duplicate,
possibly using emoji, or Airtable conditional color
may be used.

3. The user inspects possible duplicate records. 3. The user inspects possible duplicate records.

4. Records determined to be false positives are
indicated as such by selecting the {Dupe OK}
checkbox.

4. Records determined to be false positives are
indicated as such by selecting the {Dupe OK}
checkbox.

.a When {Dupe OK} is ticked, {DupeOKMatch} is
set to equal {MatchKey}.

.b In [DeDupe], {DupeOKMatches} rolls up
{Main::DupeOKMatch}.

.c In [Main], {OKMatchRec} rolls up
{DeDupe::DupeOKMatches} with an
aggregation formula of
IF(
 FIND(
 {MatchKey},
 values&''
)!=0,
 '|'&RECORD_ID()
)
That is to say, if {MatchKey} is found within
{DupeOKMatches}, {OKMatchRec} is set to
'|'&RECORD_ID().

.d In [DeDupe], {OKRecs} rolls up
{Main::OKMatchRec}.

Deduplication in Airtable • 6

USER INTERACTION BASE PROCESSING

.e In [DeDupe], {MatchOKRecs} is set to equal
{HoldOKRecs}&{OKRecs}.

.f In [Main], {TrueDupe} rolls up
{DeDupe::MatchOKRecs} with an aggregation
formula of
IF(
 {Dupe?},
 IF(
 FIND(
 '|'&RECORD_ID(),
 values&''
)=0,
 1
)
)
In other words, {DupeCooked} is set to 1 for
records where {Dupe?} = 1 and RECORD_ID()
is not found in {MatchOKRecs}.

.g When the table has been deduplicated,
{MatchOKRecs} can be copy-and-pasted into
{HoldOKRecs}. This allows a persistent record of
false positives to be maintained. Once this copy-
and-paste has been performed, all {Dupe OK}
checkboxes can be cleared.

5. Records determined to be actual duplicates are
handled appropriately, either by deleting the
redundant record or by merging duplicate records
with a master record.

5. Records determined to be actual duplicates are
handled appropriately, either by deleting the
redundant record or by merging duplicate records
with a master record.

6. (To use the merge mechanism built into the
demonstration base.) In [Main], the user selects
the + sign in {Link2Master} for the record to be
merged. From the list of records presented, the user
selects the appropriate master record.

6. (To use the merge mechanism built into the
demonstration base.) In [Main], the user selects
the + sign in {MasterID} for the record to be
merged. From the list of records presented, the user
selects the appropriate master record.

6. (Alternative method.) In [Main], the user selects
{ID} for the master record, presses Ctrl-C to
copy the value, selects {Link2Master} for the
record to be merged, and presses Ctrl-V to paste
the copied value.

6. (Alternative method.) In [Main], the user selects
{ID} for the master record, presses Ctrl-C to
copy the value, selects {MasterID} for the record
to be merged, and presses Ctrl-V to paste the
copied value.

.a {MatchKey} is not created for records that have
{MasterID} set. This in efect removes one
instance of {MatchKey} from {MatchString}.

Table 1: User interaction vs base processing for deduplication

Match Key
The, ahem, key to the whole process is the match key — or the {MatchKey}. Earlier, I emphasized
the distinction between method and mechanism. {MatchKey} is the embodiment of method.
Typically, {MatchKey} is a calculated (formula) field that represents the crucial data that

Deduplication in Airtable • 7

diferentiates one record from another — or, if identical to that of another record, indicates the
records are likely duplicates. {MatchKey}’s composition should reflect the underlying base, the
business processes surrounding its use, and an informed familiarity with common data trends and
events. For example, in the example bases, the default format of {First} {MI} {Last} is
provided to store individual’s names. However, from experience I know the {MI} field is used
inconsistently, and when it is used, frequently an incorrect initial is stored.

Therefore, in defining a {MatchKey} for this table, I began with {First}&{Last}. True, this will
undoubtedly lead to false positives, as Robert Q Jones and Robert R Jones are flagged as a possible
duplicate pair, but it will also capture Hubert H. Humphrey slumming as plain old Hubert Humphrey.
Next, I wrapped the composite FirstLast with an UPPER() function, which yielded FIRSTLAST
— and made deduplication case-insensitive. Finally, to prevent variation in punctuation,
hyphenation, and the like from blocking matches, I wrapped the whole thing with a series of
SUBSTITUTE() functions designed to smooth out insignificant diferences. My initial
{MatchKey} formula looked like this:

SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 UPPER(
 {First}&{Last}
),
 ' ',''
),
 '-'',''
),
 '.',''
)

(For the final, 100-line formula, turn to Appendix B.)

However, something important to remember is one is not limited to a single match key. For
instance, in the example bases there is a match key called, unsurprisingly, {MatchKey} — but
there is also a match key called {CompanyMatchKey} built from {Last}&{Company}. (The
example base started out as a working base for a client who had collected professional credentials
from its contact list on multiple occasions and in multiple ways — scanned business cards, sign-up
sheets at conferences, email response, screen-scraping — and {Last}&{Company} seemed the
best shot at deduplicating the data.) A second (third, fourth…) match key links to the same
[DeDupe] record as the first; however, each match key requires its own set of calculation and
management fields as outlined in the processing half of Table 1.

Deduplication in Airtable • 8

Implementing Deduplication
There are three main components to the deduplication routines, one mandatory and two optional:

1. Duplicate detection and marking
2. Flagging of false positives and their removal from results
3. Merging of authentic duplicates and their removal from results

It is certainly possible to get by with only the first module, if one’s business process allows. For
instance, there are users who require textbook deduplication: That is, their data contain true
duplicate records, entirely redundant information, of which one will be retained and the others
deleted. Such a use case has no need of exception handling: Identify duplicate records; tick the
checkbox to the lef of all but one; and delete the checked records.

Especially for larger bases, there is an argument to be made for incorporating only those features
one knows are needed, as each additional function adds complexity and processing delay. That
said, for smaller bases — say, those in the 2,500- to 5,000-record range — one may want to include
support for false positives, at least.

Duplicate Detection
To add duplicate detection and marking to a base:

1. Create a new table called [DeDupe].
For now, it should contain only a single field, {Name}, and no records.

2. In the table to be deduplicated, create a {MatchKey} field.
This is a formula field that should encompass those data considered essential in
diferentiating one record from another.

Note: The field must begin and end with a non-alphanumeric character.
(I usually use ‘|’, the vertical bar character.)

Note that {MatchKey} does not need to be unique to a record, just ‘unique-ish’ enough to
limit the number of false positives. (A person’s name is a good example: Unless one is
recording secretary of the John Smith Club, {Name} would likely be both intuitive and
unique-enough to use as the key for a membership base.) In addition, the formula
constructing {MatchKey} should reflect the business processes underlying the base. To
return to an earlier example, if the formula to create {PersonName} is

Deduplication in Airtable • 9

http://www.suspensemagazine.com/JohnSmith.html
https://en.wikipedia.org/wiki/Vertical_bar

{First}&' '&{MI}&' '&{Last}

and {MI} is known ofen to be missing or incorrect, then a good start for {MatchKey}
might be {First}&{Last}. (For more information, see Appendix A: Defining
{MatchKey}.)

3. Create a linked-record field from [Main] to [DeDupe].
For purposes of this tutorial, call it {Link2DeDupe}. Toggle of ‘Allow linking to multiple
records.’

4. Link every record in the main table to a single record in [DeDupe].
I discuss this technique in more detail in a post to Airtable Community. In brief, the easiest
way to create these links is to mark-and-copy a period (‘.’) character from a text field, click
the header of the {Link2DeDupe} field to mark the entire column, and press Ctrl-V to
paste the value into all cells in the column. This will create a [DeDupe] record with the
primary field set to ‘.’ and linked to all records in [Main].

Note this establishes links for all existing [Main] records, but records later added to
[Main] will need to be linked to . as well.

5. In [DeDupe], roll up all {MatchKey} values from [Main] into {MatchString}.
Use an aggregation function of ARRAYJOIN(values,''); this will concatenate all
{MatchKey} values with no separator character. As each {MatchKey} begins and ends
with a non-alphanumeric character, this will result in {MatchString} having a value of

|MatchKey1||MatchKey2||MatchKey3|...|MatchKeyX|

6. In [Main], create the rollup field {Dupe?}.
{Dupe?} links to [DeDupe] and rolls up {MatchString} using the following
aggregation formula2

2 An aggregation formula – as opposed to an aggregation function – is a variation on the standard Airtable formula,
entered in the aggregation function window of the rollup field configuration screen. It allows reference to the rolled-
up field to be made through use of the keyword values. Only one remote field may be referenced in this way; if the
calculation requires the value of another field from the linked table, that field must be indirectly referenced through
a lookup or another rollup field in the current table.

A couple of caveats: First, variables accessed through values are returned as an array – which is probably not
what you want. Most of the time, it will need to be cast to a string by appending &'': values&''. Second, the
aggregation function window in the rollup-field configuration screen does not support the context-sensitive
prompting found in Airtable’s formula editor. This is likely less of an issue than it might first appear, as most
complex formulas are composed ofline and then pasted into Airtable.

Deduplication in Airtable • 10

https://community.airtable.com/t/linking-every-record-of-one-table-to-a-single-record-of-another/11381

IF(
 MatchKey,
 IF(
 (LEN(
 values&''
)-LEN(
 SUBSTITUTE(
 values&'',
 MatchKey,''
)
)
)>LEN(
 MatchKey
),
 1
)
)

Essentially, this formula compares the length of {MatchString} and the length of
{MatchString} with all instances of {MatchKey} removed. If the diference is greater
than the length of {MatchKey}, then {MatchString} must have contained more than
one instance: therefore, {MatchKey} is duplicated in the base.

7. (Optional.) Further flag records for which {MatchKey} is a duplicate.
To identify duplicate records, one merely needs to create a view filtered to show only those
records where {Dupe?} = 1. To further highlight such records visually, Airtable Record
Coloring may be used, configured to set a color when {Dupe?} = 1; alternatively, a
formula field may be created that displays an emoji using a formula such as

IF({Dupe?},'❌')

And that’s it: The table is ready for deduplication. Potential duplicates will now be identified,
flagged, and possibly marked. To identify all potential dupes, create a view filtered to show records
where {Dupe?} is equal to 1.

Two things to keep in mind: First, it is up to the user to determine what to do with flagged records.
With only the duplicate detection routines implemented, there are only two ways to remove a
flagged record from the list of potential duplicates: Delete matching records until the record in
question is the only one in the base with its particular {MatchKey}, or change one or more of
{MatchKey}’s components in such a way as to make {MatchKey} unique.3 As the first approach

3 The first version of these routines used just such a technique as a way to ‘unflag’ false positives; records marked as
‘duplicate OK,’ indicating it did not actually duplicate another in the base, had their RECORD_ID()s appended to
{MatchKey}. This succeeded in removing it and matching records from the list, but it had the potential to
introduce other errors later.

Deduplication in Airtable • 11

is valid only for certain types of data sets, and the second may cause duplicate records entered later
to be overlooked, I created a second ‘module,’ if you will, containing definitions and routines to
allow the flags indicating a potential dupe to be cleared in the case of a false positive without
afecting the base’s ability to detect later matches.

Handling of False Positives
To add false positive processing to a base that already supports duplicate detection:

1. In [Main], create the checkbox field {Dupe OK}.

2. In [Main], create the formula field {DupeOKMatch}.
Configure it with the following formula: IF({Dupe OK},{MatchKey}).

3. In [DeDupe], roll up all {DupeOKMatch} values into {DupeOKMatches}.
{DupeOKMatches} links to [Main] and rolls up {DupeOKMatch} using the aggregation
function ARRAYJOIN(values,'').

4. In [Main], create the rollup field {DupeOKRec}.
{DupeOKRec} links to [DeDupe] and rolls up {DupeOKMatches} using the aggregation
formula

IF(
 AND(
 MatchKey,
 values!=''
),
 IF(
 FIND(
 {MatchKey},
 values&''
)!=0,
 '|'&RECORD_ID()
)
)

In other words, if the record’s {MatchKey} can be found in {DupeOKMatches}, set the
field to equal the record’s RECORD_ID(). This ensures not only the record with {Dupe
OK} checked but any record with the same {MatchKey} is processed as having been a
false positive.

5. In [DeDupe], roll up all {DupeOKRec} values into {DupeOKRecs}.
{DupeOKRecs} links to [Main] and rolls up {DupeOKRec} using the aggregation

Deduplication in Airtable • 12

function ARRAYJOIN(values,''). This results in a concatenated string containing the
RECORD_ID() of all records tagged as false positives.

6. In [DeDupe], create {OKRecsHold} and {OKRecsMatch}.
{OKRecsHold} is a single-line text field, currently empty. {OKRecsMatch} is a formula
field with the formula {DupeOKRecs}&{OKRecsHold}. As will shortly be explained in
more detail, the reason for these three fields is to allow the RECORD_ID()s of records
determined to be false positive to be stored persistently, while at the same time allowing the
base to reflect in real time the changing status of newly tagged records.

7. In [Main], create the rollup field {TrueDupe}.
{TrueDupe} links to [DeDupe] and rolls up {OKRecsMatch} using the aggregation
formula

IF(
 {Dupe?},
 IF(
 FIND(
 '|'&RECORD_ID(),
 values&''
)=0,
 1
)
)

The first six steps were directed at identifying and tagging false positives; this seventh step
flags those duplicates so far not determined to be false positives. (Essentially, if a record is
identified as a probable dupe, and the user has not tagged it as a false positive,
{TrueDupe} flags it as representing an actual duplication of data.)

The next three items support routines allowing for persistent tracking of false positives. As such,
they are, strictly speaking, not essential for users who intend to deduplicate a base in a single pass
and, aferwards, not worry about duplicates ever again. However, as is the case throughout this
base, it is far easier to dike out unwanted functionality somewhere down the line than it would be to
add it in later.

8. In [Main], create the rollup field {LaterMatch}.
{LaterMatch} links to [DeDupe] and rolls up {OKRecsHold} with the aggregation
formula

IF(
 AND(

Deduplication in Airtable • 13

 {TrueDupe},
 values,
 FIND(
 '|'&RECORD_ID(),
 values&''
)=0
),
 MatchKey
)

Essentially, this sets {LaterMatch} to equal {MatchKey} if the record is a duplicate and
the record ID is not in the list of approved duplicates.

9. In [DeDupe], create the rollup field {LaterMatchStr}.
{LaterMatchStr} links to [Main] and rolls up {LaterMatch} using the aggregation
formula ARRAYJOIN(ARRAYUNIQUE(values),'').

10. In [Main], create the rollup field {LaterDupe}.
{LaterDupe} links to [DeDupe] and rolls up {LaterMatchStr} using the following
aggregation formula:

IF(
 AND(
 {Dupe?},
 values
),
 IF(
 FIND(
 {MatchKey},
 values&''
)!=0,
 1
)
)

Deduplication in Airtable • 14

Illustration 1: Color coding to support false positives.

11. Modify views, fields, and color commands used to indicate potential duplications.
In my experience, the best way to configure a deduplication base with support for false
positives is to filter views based on {Dupe?} while using {TrueDupe} and {LaterDupe}
to control record coloring, as in Illustration 1, above. That way, one is initially shown all
potential duplicates, color-flagged, as in Illustration 2, below. However, as one works
through the base, tagging false positives, the color coding is cleared, indicating the records
are no longer of concern — without the irritating, repetitive filtering of active records that
would otherwise take place — as seen in Illustration 3.

Deduplication in Airtable • 15

Illustration 3: Clearing false positives with {Dupe OK}.

Illustration 2: Flagging of potential duplicates.

As far as the user is concerned, tagging false positives is as simple as ticking the {Dupe OK}
checkbox in any record containing the {MatchKey} in question. That is, if records for Robert T.
Jones, Robert Q. Jones, and Robert Jones are all flagged as potential duplicates, selecting {Dupe
OK} for any of the three will flag them all as false positives. Behind the scenes, though, the base
seems almost frenetically busy, what with values being rolled up from [Main] to [DeDupe] back
to [Main] back to [DeDupe] and, finally, back to [Main] once again. However, there is a
method to the madness:

1. The initial ticking of {Dupe OK} identifies one of the records determined to be a false
positive.

2. The tagged record surfaces its {MatchKey} to the ubiquitously linked [DeDupe] record.

3. From there, the {MatchKey} is visible to every record in the table. Each record compares its
own {MatchKey} to the list of ones identified as belonging to false positives. If the record
finds it is a false positive, it identifies itself by surfacing its unique RECORD_ID() to
[DeDupe].

4. The list of IDs newly associated with false positives is merged with the list of those previously
associated and, once again, made visible to the entire table. Each record compares its own
RECORD_ID() with the list of false positives. Those records found not to be included on
that list are flagged as {TrueDupe}s.

It requires that many handofs between [Main] and [DeDupe] for the progression from a single
tagged record to definitive identification of all associated records to be made.

Persistence and False Positives
The reason the algorithm insists upon arriving at a unique, unambiguous, and immutable ID for
each afected record has to do with the need for there to be a persistent recording of false positives
that could span multiple attempts to deduplicate the base. For example, consider the largest of the
example bases that accompany this document. Its 10,000 randomly generated records yielded 305
potential duplicates. Of those 305 flagged records, 17 proved to be actual duplicates needing to be
merged with a master record; the remaining 288 were deemed false positives. Now imagine I were
to add another 15,000 records to the base. Based on my initial experiments, I would expect to find
roughly 765 possible dupes, 715 of which would turn out to be false positives.4

4 Actually, my estimates were low; I guess the random data generator I used must be optimized for data sets of
somewhat fewer than 10,000 items. Afer another 15,000 records were added to the base, 1,458 were flagged as
potential duplicates.

Deduplication in Airtable • 16

But wait: I already vetted 305 of those flagged duplicates. Must I go through them all again?

I could simply leave {Dupe OK} checked, which would keep the vetted false positives suppressed.
Unfortunately, that would also suppress any new matching records, some of which might represent
authentic duplicates. Clearing {Dupe OK} allows incoming dupes to be identified, but it also
returns the previously cleared false positives to the pot, requiring them to be vetted again.
Fortunately, the routines provide a mechanism that allows {Dupe OK} to be cleared, allowing
newly found duplicates to be flagged while still inhibiting already vetted matches.

To enable persistent management of false positives:

1. In [DeDupe], copy {OKRecsMatch}, and paste its value into {OKRecsHold}.
As mentioned earlier, {OKRecsMatch} is a formula field consisting of {OKRecsHold}
concatenated with {DupeOKRecs} – that is, of the list of known false positives with those
newly identified. By copying its value into {OKRecsHold}, one creates an updated list of
known false positives not dependent on {Dupe OK}.

2. Once {OKRecsHold} is set, clear all checked {Dupe OK} fields.
The easiest way to accomplish this is to lef-click on the {Dupe OK} header to mark the
entire column and then press the Delete key; if prompted, confirm.

Even once {Dupe OK} is cleared, the vetted false positives do not return as flagged: The list of
RECORD_ID()s in {OKRecsHold} keeps them suppressed. As new records are added to the

Deduplication in Airtable • 17

Illustration 4: Persistent tracking of false positives.

base, duplicate detection continues. Should a record whose {MatchKey} matches that of a
previously cleared false positive be added, the new duplicate is flagged as shown in Illustration 4,
above. Note that Records 5 and 11 are previously discovered false positives tracked persistently by
the base, and Record 13 is newly added. Using the coloring configuration shown in Illustration 1,
the previously vetted records are highlighted with gold, the newly identified match in red.

Duplicated Bases and RECORD_ID()
RECORD_ID() was chosen as the identifier for persistent tracking of false positives because it is a
unique value permanently associated with the record — unlike, say, a value derived from an
autonumber field. Although the latter can be considered permanent and unchanging under normal
circumstances, it is possible to regenerate an autonumber field, potentially renumbering every
record in the base. RECORD_ID(), on the other hand, is permanently associated with a specific
record: About the only to change it is to move to a diferent base.

——and therein lies a potential weakness of using RECORD_ID(): Should it ever become necessary
to make a copy of the base — to share code or data with another user, to try out some new ideas
without jeopardizing a production system, or simply to create a backup of critical data — as soon as
the copy is opened, every false positive ever logged by the system will suddenly reappear.
{OKRecsHold} may still be a list of records to ignore… but now it is a list of records found in a
diferent base.

One possible solution to this problem would be to use a diferent unique identifier in place of
RECORD_ID() — assuming such a creature exists in the base. Typically, this might be some sort of
transaction-linked counter: invoice number, perhaps, badge scan number, Unix timestamp.5
Another approach would be to convert the formula fields where RECORD_ID() surfaces to single-
line text fields before the copy. (This still leaves the question of how best to handle any future
deduplication needs….)

Finally, one can always replace the RECORD_ID()-driven key field with one not tied to the base’s
infrastructure — an autonumber, for instance — perform the copy, and repopulate the table with
corresponding RECORD_ID()s from the new base. To do so, once the base has been updated for
persistent false positives — that is, once {OKRecsMatch} has been copied into {OKRecsHold}
and {Dupe OK} has been cleared —

5 But not the timestamp of the Airtable record, as that sufers the same susceptibility to base copies as
RECORD_ID().

Deduplication in Airtable • 18

1. Create an autonumber field in [Main] called {N}.

2. Create a formula field called {Main::AnbrID}, for ‘autonumber ID,’ with the formula
REPT('0',5-LEN({N}&''))&{N}.

3. Create a rollup field called {Main::DupeOKID}.
It should follow {Link2DeDupe} and roll up {OKRecsMatch} with this aggregation
formula:

IF(
 values!='',
 IF(
 FIND(
 '|'&RECORD_ID(),
 values&''
)!=0,
 '|'&AnbrID
)
)

4. Create a rollup field called {DeDupe::DupeOKIDs}.
It should follow {Link2Main} and roll up {DupeOKID} with the aggregation function
ARRAYJOIN(values,’’).

5. Create a single-line text field called {DeDupe::HoldOKIDs}.
Copy (Ctrl-C) the value in {DupeOKIDs} and paste (Ctrl-V) it into {HoldOKIDs}.

6. Duplicate the base.

7. Open the duplicated base.
(Note: All previously-suppressed false positives will be flagged as duplicates. This is to be
expected.)

8. In [DeDupe], delete the value from {OKRecsHold}.

9. In [Main], change the configuration of {DupeOKRec}.
It should now roll up {HoldOKIDs} with the aggregation formula

IF(
 values!='',
 IF(
 FIND(
 '|'&{AnbrID},
 values&''

Deduplication in Airtable • 19

)!=0,
 '|'&RECORD_ID()
)
)

10. In [DeDupe], copy the value in {OKRecsMatch} and paste it into {OKRecsHold}.

11. In [Main], return {DupeOKRec} to its original configuration.
It should roll up {DupeOKMatches} using the aggregation formula

IF(
 AND(
 MatchKey,
 values!=''
),
 IF(
 FIND(
 {MatchKey},
 values&''
)!=0,
 '|'&RECORD_ID()
)
)

12. Delete the no-longer-needed fields.
These include {Main::DupeOKID}, {DeDupe::DupeOKIDs}, and
{DeDupe::HoldOKIDs}. {Main::N} and {Main::AnbrID} may be retained or
deleted as desired. (It may be necessary to remove them from the original base, as well.)

Merger of Authentic Duplicates
Finally, some sort of mechanism is needed to support the management of records found to
represent authentic duplicates – at least for those data sets where simply deleting redundant
records is not an option. Ofen, such duplication is handled by merging data from the matching
records, especially since each record may contain fields not present in the other(s). The Airtable
Deduplication Block includes a powerful yet easy-to-use merge editor that greatly simplifies the task
of combining data from multiple records. What these routines ofer is, in comparison, more of a
placeholder for a merger mechanism than a viable mechanism itself; still, it illustrates how one
might integrate a more-robust merge function into the deduplication process so that merged
records are permanently removed from the work flow.

Deduplication in Airtable • 20

Note: The ‘merge’ routine presented here only establishes a primary–secondary relationship
between a master record and one or more subsidiary (duplicate) records, preparatory to the user
combining data as appropriate; it does not actually merge the data.

Unfortunately, as was mentioned earlier, record merging is by far the most processing-intensive
function included in these routines. Each time duplicates are merged, an instance of the applicable
{MatchKey} is removed from {MatchKeyStr}. This in turn causes every calculated field
involved in these routines to be recalculated – a process that, in a medium-to-large base (i.e., one of
10,000 or more records), can take over a minute. However, as it takes essentially the same amount
of time to regenerate {MatchKeyStr} and perform the recalculations that result following the
modification of multiple {MatchKey}s as it does for a single one, it may be preferable to merge a
table’s afected records all at once instead of sequentially. The solution presented here supports just
such an approach.

To add support for merging duplicates to a base:

1. In [Main], create a self-join linked-record field called {MasterID}.
This should link back to [Main]. Toggle of ‘Allow linking to multiple records.’

2. In main, create a single-line text field called {HoldMasterID}.

3. Wrap {MatchKey} with IF(NOT({MasterID}), ...).
The bases provided in support of this document include merge support by default; however,
as described in Appendix A: Defining {MatchKey}, one can configure {MatchKey} without
it. If that is the case, to add merger support to the base, an explicit reference to
{MasterID} must be added to the formula.

To link a duplicate record to the applicable master record, the user enters the master record’s ID –
that is, the value of its primary field – into the {MasterID} field of the subsidiary record. There are
three diferent ways to create this link:

• The user may select the plus sign (‘+’) in the {MasterID} field of the subsidiary record.
This will cause a list of all records in the table to be displayed. The user then searches or
scrolls through the list to find the master record’s entry and selects it.

• The user may copy-and-paste the master record’s primary field into the subsidiary record’s
{MasterID} field. This is most easily accomplished by selecting the master record’s
primary field (that is, the lef-most cell of the record), pressing Ctrl-C to copy the value,

Deduplication in Airtable • 21

selecting {MasterID} for the subsidiary record, and pressing Ctrl-V to paste the copied
value.

• Given the significant processing overhead associated with merging records, as discussed
above, it will ofen be preferable to log the master record IDs for all subsidiary records
currently identified in order to process them in a single batch. To accomplish this:

1. For each subsidiary record identified, the user copy-and-pastes the appropriate master
record ID into the {HoldMasterID} field of the subsidiary record.

2. When all subsidiary records have been accordingly updated, the user lef-clicks on the
{HoldMasterID} header to select the entire column.

3. The user presses Ctrl-C to copy all values in the column.

4. The user lef-clicks on the {MasterID} header to select the entire column.

5. Finally, the user presses Ctrl-V to paste all copied values into {MasterID}.

This last approach is far and away the recommended method to perform multiple mergers, as the
amount of processing required to update a single {MasterID} field is nearly the same as that
required to update the {MasterID} field of all records in the table.6

Illustration 5, below, provides a before-and-afer view of record merger. Note {MatchKey} is not
generated for a record where {MasterID} is not equal to BLANK(). This removes the record
entirely from the deduplication process, possibly clearing {Dupe?} for the master record. (It is this
elimination of {MatchKey} that makes this routine so processing-heavy, in that it also forces the
recalculation of {DeDupe::MatchString}; in turn, the recalculation of {MatchString}
triggers the recalculation of essentially every other formula or rollup field defined by the routines.)

6 Well, all-but-one; you’d never update all records.

Deduplication in Airtable • 22

Sample Bases
Three sample bases accompany this document; they are identical except for the number of records
each contains, with the larger two provided to allow prospective users to predict how responsive
the routines might prove for their particular application.7 To make use of any of these bases, open
the shared read-only link and duplicate the base into your own workspace.

Please note the third, largest base requires at least a Pro-level subscription, as it contains 10,000
records. While all three bases make use of record coloring, also available only to Pro- and
Enterprise-level subscribers, the normally hidden {.} field — so-named as to allow the column to
be made as narrow as possible — uses emoji to provide similar color-coding.

BASE LINK

14-Record Deduplication Base https://airtable.com/shrMnI6K6OIKvLNDN

1,000-Record Deduplication Base https://airtable.com/shr84Pr380qiVyeix

10,000-Record Deduplication Base https://airtable.com/shrwhXaERZRqXkdGG

Table 2: Read-only shares for the demonstration and sizing bases

7 Sample data courtesy of the always-wonderful FakeNameGenerator, an invaluable assistance when developing and
testing bases.

Deduplication in Airtable • 23

Illustration 5: Merging records, before and afer.

https://airtable.com/shrwhXaERZRqXkdGG
https://airtable.com/shrwhXaERZRqXkdGG
https://airtable.com/shr84Pr380qiVyeix
https://airtable.com/shr84Pr380qiVyeix
https://airtable.com/shrMnI6K6OIKvLNDN
https://airtable.com/shrMnI6K6OIKvLNDN
http://fakenamegenerator.com/

Trouble-shooting Common Problems
Newly added records never register as duplicate.
All records in the table to be deduplicated must be linked to the single record in the [DeDupe]
table. (See Item 4 in the section on Duplicate Detection.)

Newly added records that match earlier-cleared false positives do not register as duplicate.
To identify and flag newly entered records, the {Dupe OK} field must be cleared. Normally this is
only done afer copying the value of {DeDupe::OKRecsMatch} into {OKRecsHold}. See the
section on Persistence and False Positives for more information.

Clearing {Dupe OK} causes all false positives to be flagged again as duplicates.
The value of {DeDupe::OKRecsMatch} must be copied into {DeDupe::OKRecsHold} before
clearing {Dupe OK}. See the section on Persistence and False Positives for more information.

Video Introduction
Currently, there is a rather long (22 minutes) introductory video available. Intended to accompany this
document, the video discusses each of the component ‘modules,’ with an animation detailing each routine’s
process flow, followed by a narrated screen capture sequence illustrating how the functionality evinces
itself within Airtable. The main link streams under HTML5 and may not work with all browsers or, especially,
mobile devices. As an alternative, a two-part version is available on YouTube.

Full video: http://paladesigns.com/airtable/dedupe/

Alternative part 1: https://youtu.be/1IQBNKidE0k
Alternative part 2: https://youtu.be/6bHT3CLclAM

Updates and Corrections
The most-recent version of this document can always be found at
http://paladesigns.com/airtable/dedupe.pdf.

The Author
W. Vann Hall
Pala Designs

As always, I can be reached through Airtable Community or at wvannhall@paladesigns.com.

Deduplication in Airtable • 24

http://paladesigns.com/airtable/dedupe/
https://youtu.be/6bHT3CLclAM
https://youtu.be/1IQBNKidE0k
mailto:wvannhall@paladesigns.com
http://paladesigns.com/airtable/dedupe.pdf

Appendix A: Defining {MatchKey}
As mentioned earlier, an appropriately designed {MatchKey} is absolutely essential for
deduplication properly to support and enhance one’s business processes.

The steps involved in designing a well-rounded {MatchKey} are as follows:

1. Identify those fields most useful in determining a record’s identity.
That is, assuming each record represents one, and only one, thing, which field or
combination of fields is most likely to be a unique designator of that thing? For some data
types, the choice will be obvious: A serial number, a MAC address, a membership ID. Others,
though, may require a little thinking – a person’s name, for example. First and last? First,
middle, and last? Middle or middle initial? Sufix? Title? Matronymic?

Another concern is how ‘fuzzy’ a match can be. For keys assumed to be unique, the
answer is, ‘not at all,’ while others may benefit from a little uncertainty. To pick on names,
once again, will James always be James – or might he be Jim? How about Jimmy? Or
Jonathan: John, Jon, Johnny, Johnnie, Jonny? Jack? In some cases, it might be best to use
only part of a field – for instance, LEFT({First Name},1)&{Last Name} is one
possible way around the Jim-and-Johnny problem.

2. Decide whether the match should be case-sensitive.
Unless there is a pretty compelling reason to preserve case sensitivity, matches should be
case insensitive. Doing so prevents failing to detect a duplicate as the result of either stylistic
diferences (‘duVal’ versus ‘DuVal’) or tppos.

To do away with case sensitivity, wrap {MatchKey} in either an UPPER() or a
LOWER() function. This should be the first transformation applied to the core data values,
as it simplifies any subsequent ones.

3. Use SUBSTITUTE() to improve S/N.
To paraphrase Wikipedia, in science and engineering, the signal-to-noise ratio (ofen
abbreviated S/N or SNR) is a measure comparing the level of a desired signal to the level of
background noise. In information theory, the term is ofen used metaphorically to indicate
the level of dificulty experienced in isolating meaningful information from unimportant
chatter. For instance, here the signal would be the significant information contained in the
targeted fields that allows the user to determine a record’s identity. Noise, on the other hand,
is predominantly content-less information that introduces superficial variation while
conveying little or no additional meaning. The amount of noise in a {MatchKey} can be

Deduplication in Airtable • 25

reduced by using nested SUBSTITUTE() statements either to eliminate noise content or
to replace it with non-noisy alternative content.

In my experience, there are three general categories of noise:

1. Punctuation or spacing.
Varying use of periods, hyphens, and other punctuation marks, along with
inconsistent spacing, ofen interferes with duplicate detection. Replace such
characters with the empty string, '', removing them from {MatchKey}:

SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 {KeyCore},
 '.',
 ''
),
 '-',
 ''
),
 ' ',
 ''
),
 ',',
 ''
),
 '\'',
 ''
)

2. Accents and alternative characters.
Strictly speaking, accented characters are not content-less; however, depending on
the base’s data source, they might as well be. This is especially the case when some of
the data originates from the US, given Americans’ general unfamiliarity with accented
characters and the lack of a standard way to enter such characters using a QWERTp
keyboard.

The solution here is to use SUBSTITUTE() to replace accented or regional
characters in {MatchKey} with their unaccented or English equivalents. Which
characters to replace depends upon the expected dataset. Clearly, a Spanish-
language application would look to substitute a diferent group of characters than
would a Finnish-language one, while a base intended for pan-European support
would need to replace a far larger set of characters. In fact, given SUBSTITUTE()’s
relatively low processing burden, it may prove advantageous to perform at least a
minimal transformation of accented characters – covering, say, those found in

Deduplication in Airtable • 26

Western European languages – even for a base with a purely US scope.
The basic format for all such transformations is

SUBSTITUTE([Proto-MatchKey],‘[Accented]’,’[Unaccented]’).
The code for accented character replacement should go outside – that is, should
execute afer – any calls to UPPER() or LOWER(); otherwise, separate routines will
be needed to replace both upper- and lower-case accented characters.

Appendix B contains lists and code for a number of such substitutions.

3. ‘Semantic’ noise. Finally is what I call ‘semantic’ noise: Context-dependent optional
content — articles, abbreviations, helper words — that may cause two semantically
identical records to be interpreted as unique. Perhaps the best example again comes
from the task of deduplicating a mailing list, this time from the field indicating
afiliated organization. Consider ‘Coca-Cola,’ ‘The Coca-Cola Corporation,’ ‘Coca-Cola,
Inc.,’ and ‘Coca-Cola Corp.’ Four ways to say the same thing, with ‘Coca-Cola’ the
signal surrounded by substantial noise. Depending on the industry and nationality
involved, there may be a number of possible targets for elimination: ‘The,’ ‘A,’
‘Company,’ ‘Companies,’ ‘Co.,’ ‘Incorporated,’ ‘Corporation,’ ‘Corp,’ ‘Inc.,’ ‘LP,’ ‘LLP,’
‘LLC,’ ‘Ltd.,’ ‘S.R.O.,’ ‘Berhad,’ ‘BHD,’ ‘SDN BHD,’ ‘SND BHD,’ ‘D.O.O.,’ ‘gmbh’ — the list
goes on and on.

In addition, industry-specific lists may need to be ‘de-noised’ of words and
abbreviations ofen, um, incorporated as part of a company name. An advertising-
related list might need to be stripped of ‘Marketing,’ ‘Mktg,’ ‘Group,’ and ‘Agency’; one
dealing with automobile dealerships could stand to lose ‘Motors,’ ‘Automobiles,’
‘Cars,’ and ‘Motorcars.’8 Finally, given the inevitable spill-over of graphic design into
corporate naming conventions, for matching purposes it is probably advisable to
eliminate such things as ‘ and ,’ ‘&,’ ‘+,’ ‘’n,’ and the like.

Note the captured space characters in that last example. To prevent unintentional
substitutions, the elimination of spaces described in Item 1, above, should be
withheld until afer semantic cleaning, and individual words to remove should be
demarcated by leading or trailing spaces. Otherwise, one runs the risk of ‘Theodore
Anderson Distinctive Bakery’ becoming ‘odore erson Disttive Bakery.’

A well-configured {MatchKey} should not only capture the assumptions inherent in the data
model, it should also reflect operational expertise. To return to an earlier example, according to the
data model an individual’s name may be expected to consist of a first name, middle initial, and last

8 This represents a diferent class of semantic noise reduction than the first described, as these terms are not, strictly
speaking, mere ‘helper’ words but components of the company name; e.g., ‘The Johnson Marketing Group, Inc.’

Deduplication in Airtable • 27

name. At the same time, operational experience and institutional knowledge may suggest middle
initials are ofen missing or incorrect. Were one to base {MatchKey} on the data model alone, the
result could be an unacceptably high rate of false negatives — that is, duplicate records not
recognized as such, thanks to a missing or invalid middle initial. Accordingly, rather than having the
formula {First}&{MI}&{Last} at its core, {MatchKey} would be better served by starting
with {First}&{Last}. True, doing so would undoubtedly generate a number of false positives,
but the system is designed to handle these relatively painlessly.

Deduplication in Airtable • 28

Appendix B: Accented/Unaccented Characters
Strictly speaking, not all of the following should be considered accented characters; even
‘characters with diacritical markings’ isn’t quite correct, as in some cases they represent unique
characters in their own right, rather than a modified version of another character. And replacing a
marked character with an unmarked onee does more than merely simplifying the word for an
American audience: Ofen, it changes one word to another, or turns a word into a meaningless
clump of letters.

But we don’t care: The changes are not being wrought within the word itself but merely within the
{MatchKey} used to identify potential matches. (Other methods of encoding text for comparison
warp the original text more extremely; for instance, under Soundex the key for ‘Catherine’ is ‘C365.’)
As with all instances of ‘noise reduction,’ the goal is to reduce the amount of permissible variation in
the field to be compared in order to lower the number of false negatives generated — that is,
contextually duplicate records not identified by the system.

Deduplication in Airtable • 29

LANGUAGE ACCENTED CHARACTERS

Bosnian Ć Č Đ Š Ž

Croatian Ć Č Đ Š Ž

Czech Á Č Ď É Ě Í Ň Ó Ř Š Ť Ú Ů Ý Ž

Dutch À Á Ä Ç È É Ë Ì Í Ï Ĳ Ò Ó Ö Ù Ú Ü

French À Â Ä Ç È É Ê Ë Ì Î Ï Ò Ô Ö Ù Û Ü

German Ä Ö Ü ẞ

Icelandic Á Å Ä Æ É Í Ó Ö Ú Ý Þ

Italian À È É Ì Î Ò Ó Ù

Latvian Ā Č Ē Ģ Ī Ķ Ļ Ņ Š Ū Ž

Polish Ą Ć Ę Ł Ń Ó Ś Ż Ź

Portuguese À Á Â Ã Ç É Ê Í Ó Ô Õ Ú

Romanian Ă Â Î Ş Ș Ţ Ț

Serbian Ć Č Đ Š Ž

Slovak Á Ä Č Ď É Í Ĺ Ľ Ň Ó Ô Ŕ Š Ť Ú Ý Ž

Spanish Á É Í Ñ Ó Ú Ü

Swedish Á Ä Å É Í Ó Ö Ú

Table 3: Characters with diacritical marks, by language

https://en.wikipedia.org/wiki/Soundex

The following somewhat daunting formula for {MatchKey} should satisfactorily ‘de-noise’ match
fields in most major Western European languages: English, French, German, Spanish, Italian, and
Portuguese. The routine performs substitutions to replace the following characters:

À Á Â Ä Ç È É Ê Ë Ì Í Î Ï Ñ Ò Ó Ô Ö ẞ Ù Ú Û Ü
Support for additional languages based on a Latin character set may be incorporated by providing
accented:unaccented substitution routines for additional characters as shown in Table 3, above.
(This was taken from the demo bases; as such, it uses {First}&{Last} as the basis for
{MatchKey}, and will need to be adjusted accordingly, depending on the application.)

IF(
 AND(
 AND(
 {First},
 {Last}
),
 NOT(
 MasterID
)
),

'|'&SUBSTITUTE(

SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
 SUBSTITUTE(
SUBSTITUTE(

Deduplication in Airtable • 30

 SUBSTITUTE(
 SUBSTITUTE(
 UPPER(
 {First}&{Last}
),
 '.',''
),
 '\'',''
),
 ',',''
),

 'À','A'
),
 'Á','A'
),
 'Â','A'
),
 'Ä','A'
),
 'Ç','C'
),
 'È','E'
),
 'É','E'
),
 'Ê','E'
),
 'Ë','E'
),
 'Ì','I'
),
 'Í','I'
),
 'Î','I'
),
 'Ï','I'
),
 'Ñ','N'
),
 'Ò','O'
),
 'Ó','O'
),
 'Ô','O'
),
 'Ö','O'
),
 ' ','SS'ẞ
),
 'Ù','U'
),
 'Ú','U'
),

Deduplication in Airtable • 31

 'Û','U'
),
 'Ü','U'
),
 ' ','')&'|')

Deduplication in Airtable • 32

